Route Selection Decision Support in Convective Weather: a Case Study of the Effects of Weather and Operational Assumptions on Departure Throughput
نویسندگان
چکیده
This paper presents a detailed study of a convective weather event affecting the northeastern United States on 19 April 2002: its impacts on departure throughput, the response of traffic managers and an analysis of the potential effects of decision support on system performance. We compare actual departure throughput to what may have been achieved using the Route Availability Planning Tool (RAPT), a prototype decision support tool. We examine two questions: Can decision support identify opportunities to release departures that were missed during the event? How is route selection guidance affected by the operational model incorporated into the decision support tool? By “operational model”, we mean three things: the choice of weather forecast information used to define hazards (precipitation, echo tops, etc.), the model for how airspace is used (route definition and allocation) and the assessment of the likelihood that a given route is passable. We focus our analysis on the operational model only; we eliminate weather forecast uncertainty as a factor in the analysis by running RAPT using the actual observed weather as the forecast (‘perfect’ forecast). Results show that decision support based on perfect forecasts is sensitive to all three elements of the operational model. The sensitivity to weather metrics became evident when we compared decision support based upon perfect forecasts of level 3 vertically integrated liquid (VIL) to that based upon VIL plus storm echo tops. Traffic managers were at times able to move more aircraft by abandoning nominal routing than if they had used nominal routing with perfect weather information. The assessment of route availability will, at times, be ambiguous; different interpretations of that assessment lead to decisions that result in significant differences in departure throughput. These results suggest that for traffic flow management tools, a realistic operational model may be at least as important as the frequently discussed problem of weather forecast uncertainty.
منابع مشابه
Evaluation of Weather Impact Models in Departure Management Decision Support: Operational Performance of the Route Availability Planning Tool (rapt) Prototype
There is a critical need for improved departure management during convective weather events in the highly congested airspace in the Northeast and upper Midwest. An early study (Allan, 2001) of the New York Integrated Terminal Weather System (ITWS) prototype suggested that small increases in New York airport departure rates during Severe Weather Avoidance Programs (SWAP) could result in signific...
متن کاملThe Route Availability Planning Tool (RAPT): Evaluation of Departure Management Decision Support in New York during the 2008 Convective Weather Season
Severe weather avoidance programs (SWAP) due to convective weather are common in many of the busiest terminal areas in the US National Airspace System (NAS). In order to make efficient use of available airspace in rapidly evolving convective weather, it is necessary to predict the impacts of the weather on key resources (e.g., departure and arrival routes and fixes), with frequent updates as th...
متن کاملData-driven evaluation of a flight re-route air traffic management decision support tool
Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making a re-route decision, which is one solution to mitigate a...
متن کاملSevere Weather Avoidance Program Performance Metrics for New York Departure Operations*
When operationally significant weather affects the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. Following a SWAP, the day’s events are reviewed and the TFM initiatives used are evaluated to understand their impact on the traffic...
متن کاملAssessment and Interpretation of En Route Weather Avoidance Fields from the Convective Weather Avoidance Model
This paper presents the results of a study to quantify the performance of Weather Avoidance Fields in predicting the operational impact of convective weather on en route airspace. The Convective Weather Avoidance Model identifies regions of convective weather that pilots are likely to avoid based upon an examination of the planned and actual flight trajectories in regions of weather impact. Fro...
متن کامل